Tracing and Profiling of
GPU-Accelerated Software

Progress Report Meeting
May 5, 2017

Paul Margheritta Michel Dagenais

DORSAL lab

Ecole Polytechnique de Montréal

Tracing and Profiling of GPU-Accelerated Software Current results Future work

Introduction

e GPU: for graphics and general
purpose (GPGPU)

e So many cores! We lack tools
for that.

e Example: Radeon R9 Nano
from AMD, 4096 cores

e We need to address issues
related to GPU specifics and
highly parallel systems

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 2/14

Tracing and Profiling of GPU-Accelerated Software Current results Future work

Software context

V] e
:"IL|-II|J—'- e ROCm (Radeon Open Compute):
open-source platform for GPU
GPUOpen development

e HSA (Heterogeneous System
Architecture): runtime and API used to
launch compute kernels

RO|
|G

CODE XL

e CodeXL: open-source debugging and
performance analysis tool for HSA and
OpenCL

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 3/14

Tracing and Profiling of GPU-Accelerated Software Current results Future work

Research goals
e Analyze current tracing and profiling
mechanisms

e Explore AMD initiatives for performance
analysis on GPUs

e Provide tracing with LT Tng in the HSA
runtime

e Design views in Trace Compass for better
understanding

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 4/14

Tracing and Profiling of GPU-Accelerated Software Introduction Future work

Common techniques

‘tracepoint function_entry ‘

LD_PRELOAD
hsa_init _— hsa_init

‘tracepoint function_exit ‘

new hsa_init

e Intercepting and replacing symbols in the HSA runtime
e Early solution: changing links in the API function table

e More flexibility with preloaded libraries: build a collection of
libraries that intercept API calls and other functions and
preload them with LD_PRELOAD

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 5/14

Tracing and Profiling of GPU-Accelerated Software Introduction Future work

Call stack events

e All API functions instrumented at entry and exit

e Generation of interception sources automated
with Python scripts

[14:09:46.995847859] (+0.000000212) paul-gpu i 2}, { vtid = 9639 }, { name = "hsa_agent_iterate_regions" }
6.995848105] (+0.000000246) paul-gpu ine: fun e id = 2 }, { vtid = 9639 }, { name hsa_memory_allocate” }
6.995873645] (+0.600625540) paul-gpu i ion_exit: _id =2 }, { vtid = 9639 }, { name = "hsa_memory_allocate" }
(+0.000002556) paul-gpu i i d id = 9639 }, { name = "hsa_queue_load_write_index_relaxed” }
(+0.600001298) paul-gpu time:functi 1 R , id = 9639 }, { name = "hsa_queue_load_write_index_relaxed" }
6.995878536] (+0.000001037) paul-gpu ine: fun { cpu_id id = 9639 }, { name = "hsa_queue_store_write_index_relaxed” }
6.995879172] (+0.600600636) paul-gpu i ion_exi =2 id = 9639 }, { name = "hsa_queue_store_write_index_relaxed” }
995880363] (+0.600001191) paul-gpu i i i id = 9639 }, { name = "hsa_signal_store_relaxed" }
.995881433] (+0.000001076) paul-gpu time:function_ext id =23, id = 9639 }, { name = "hsa_signal_store_relaxed" }
6.998467990] (+0.002586557) paul-gpu ine: fun e { cpu_id i 9639 }, { name hsa_signal_destroy” }
46.998497508] (+0.600629518) paul-gpu i ion_exi =2 id = 9639 }, { name = "hsa_signal_destroy”
.998498496] (+0.000000988) paul-gpu i i i id = 9639 }, { name = "hsa_memory_free" }
.998629735] (+0.000131239) paul-gpu hsa_runtime:functi 1 R , id = 9639 }, { name = "hsa_memory_free" }
6.998630386] (+0.000000651) paul-gpu hsa_runti ntry: { cpu_t id = 9639 }, { name = "hsa_memory_free
998757302] (+0.600126916) paul-gpu hsa_runtime:function_exit: { cpu_id = 2 id = 9639 }, { name = "hsa_memory_free" }
ST () I G e o s O id id = 9639 }, { name = "hsa_nmemory_free"
9987657161 (18 .086€11697) paulgpu hsa runt ne: funct 1 R , id = 9639 }, { name = "hsa_memory_free" }
(+0.600003044) paul-gpu hsa_runtis e oy entry: { cpu_id id = 9639 }, { name = "hsa_executable_destroy” }
(+0.000031728) paul-gbu hea runtime: function ext =2 id = 9639 }, { name = "hsa_executable_destroy" }
.998805579] (+0.000001091) paul-gpu_hsa_runtime:function_entry i } id = 9639 }, { name = "hsa_code_object_destroy” }

6/14

Progress Report Meeting — May 2017 — Paul Marghers

Tracing and Profiling of GPU-Accelerated Software Introduction Future work

Queue profiling events

e User-mode queues are used to dispatch functions to be
executed on the GPU

e Gives the state of the user-mode queues

e Information about the AQL packets sent to the queues is
also available

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 7/14

Tracing and Profiling of GPU-Accelerated Software Introduction Future work

Kernels timing

¢ A profiled queue allows us to get timing information

o Start/end timestamps are aligned on the monotonic clock
of the system

e This information is obtained in an asynchronous way

 agent_handle = 0

SRR o 00, e c t_handle

{ vild = 9774 }, { kernel_object = ¥ , agent_handle = o

SRR 076C1008, e 2 t_handle
vtid = 9773 }, { kernel_object =
viwd o {8
076Ca000, kernel_s _copy_kernel”, agent_handle = ©

0764008, k e 2 t_handle

Progress Report Meeting — May 2017 — Paul Margheritt:

Michel Dagenais 8/14

Tracing and Profiling of GPU-Accelerated Software Introduction Future work

Performance counters

e Performance counters provide low-level, hardware-related
data

e The SoftCP mode is used to define pre- and post-dispatch
callbacks

e Those callbacks open and close contexts useful for the
collection of performance counters

e In the multi-threaded case, we need a lock on the opening
of a context

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 9/14

Tracing and Profiling of GPU-Accelerated Software Introduction Future work

Linux kernel events

e Some trace points are already
defined in the AMD Linux kernel
drivers

e Some other trace points may be
added

e Comes in addition with user space
tracing for more information

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 10/14

Tracing and Profiling of GPU-Accelerated Software Introduction Future work

Post-tracing processing

call_stack (no prerequisite)
e The 4 user-space tracing
targets are mutually
. . a1 (requires a profiled queue
mcompat'ble queue_profiling with no kernel timing)

e Traces will have to be
collected separately, in
multiple runs, and then
merged or reduced

(requires a profiled queue

kernel_times with kernel timing)

(requires specific contexts

perf_counters to be open)

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 11/14

Tracing and Profiling of GPU-Accelerated Software Introduction Future work

Combining data from multiple runs

e Early solution: using Babeltrace Python bindings

e Trace Compass experiments allow merging and offsetting of
traces

e Mechanisms for sorting and merging have been proposed for
Chromium traces and could be re-used

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 12/14

Tracing and Profiling of GPU-Accelerated Software Introduction Current results

Future work

e Adapt to current work to OpenCL
applications

e Find more generic solutions for trace
merging

e Provide more advanced Linux kernel
tracing

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 13/14

Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Thank you!

Any questions?

paul .margheritta@polymtl.ca

Progress Report Meeting — May 2017 — Paul Margheritta, Michel Dagenais 14/14

	Introduction
	Current results
	Future work

