
Tracing and Profiling of

GPU-Accelerated Software

Progress Report Meeting
May 5, 2017

Paul Margheritta Michel Dagenais

DORSAL lab
École Polytechnique de Montréal



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Introduction

• GPU: for graphics and general
purpose (GPGPU)

• So many cores! We lack tools
for that.

• Example: Radeon R9 Nano
from AMD, 4096 cores

• We need to address issues
related to GPU specifics and
highly parallel systems

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 2/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Software context

• ROCm (Radeon Open Compute):
open-source platform for GPU
development

• HSA (Heterogeneous System
Architecture): runtime and API used to
launch compute kernels

• CodeXL: open-source debugging and
performance analysis tool for HSA and
OpenCL

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 3/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Research goals

• Analyze current tracing and profiling
mechanisms

• Explore AMD initiatives for performance
analysis on GPUs

• Provide tracing with LTTng in the HSA
runtime

• Design views in Trace Compass for better
understanding

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 4/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Common techniques

hsa_init hsa_init

tracepoint function_entry

tracepoint function_exit

LD_PRELOAD

new hsa_init

• Intercepting and replacing symbols in the HSA runtime

• Early solution: changing links in the API function table

• More flexibility with preloaded libraries: build a collection of
libraries that intercept API calls and other functions and
preload them with LD PRELOAD

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 5/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Call stack events

• All API functions instrumented at entry and exit

• Generation of interception sources automated
with Python scripts

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 6/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Queue profiling events

• User-mode queues are used to dispatch functions to be
executed on the GPU

• Gives the state of the user-mode queues

• Information about the AQL packets sent to the queues is
also available

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 7/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Kernels timing

• A profiled queue allows us to get timing information

• Start/end timestamps are aligned on the monotonic clock
of the system

• This information is obtained in an asynchronous way

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 8/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Performance counters

• Performance counters provide low-level, hardware-related
data

• The SoftCP mode is used to define pre- and post-dispatch
callbacks

• Those callbacks open and close contexts useful for the
collection of performance counters

• In the multi-threaded case, we need a lock on the opening
of a context

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 9/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Linux kernel events

• Some trace points are already
defined in the AMD Linux kernel
drivers

• Some other trace points may be
added

• Comes in addition with user space
tracing for more information

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 10/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Post-tracing processing

• The 4 user-space tracing
targets are mutually
incompatible

• Traces will have to be
collected separately, in
multiple runs, and then
merged or reduced

call_stack

queue_profiling

kernel_times

perf_counters

(no prerequisite)

(requires a profiled queue 
with no kernel timing)

(requires a profiled queue 
with kernel timing)

(requires specific contexts 
to be open)

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 11/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Combining data from multiple runs

• Early solution: using Babeltrace Python bindings

• Trace Compass experiments allow merging and offsetting of
traces

• Mechanisms for sorting and merging have been proposed for
Chromium traces and could be re-used

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 12/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Future work

• Adapt to current work to OpenCL
applications

• Find more generic solutions for trace
merging

• Provide more advanced Linux kernel
tracing

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 13/14



Tracing and Profiling of GPU-Accelerated Software Introduction Current results Future work

Thank you!

Any questions?

paul.margheritta@polymtl.ca

Progress Report Meeting – May 2017 – Paul Margheritta, Michel Dagenais 14/14


	Introduction
	Current results
	Future work

